07
6

重读王小波

0
归档:2021年6月分类:点滴生活

这几日开始重读王小波的作品,打算从《沉默的大多数》到《黄金时代》、《白银时代》、《青铜时代》和《革命时期的爱情》,然后把王小波全集剩下的文章都读一遍。前面这四本书是我在大学的时候读过的图书,那时候大一宿舍有一位江苏的舍友,他姐姐是南京师范大学的中文系学生,极力推荐他读王小波,我受他的影响读完了这几本书。那时候读王小波,觉得很奇特,但我觉得自己并没有完全读懂他。虽然如此,我相信王小波对我的影响很大,这种影响是不知不觉中的影响,那时候中文互联网还很自由,我们都还可以使用谷歌的手气不错,那时候真的是中国互联网的黄金时代。

这次我放弃那种囫囵吞枣、一目十行的阅读方法,而是细致阅读,特别是阅读《沉默的大多数》的时候。这两天读到《中国知识分子与中古遗风》里面关于知识分子最害怕的事情,王小波真是太睿智了,这段话至今依然令人惊叹:

“我也有一个问题,是这样的:什么是知识分子最害怕的事?而且我也有答案,自以为经得起全球知识分子的质疑,那就是:知识分子最怕活在不理智的年代。所谓不理智的年代,就是伽利略低头认罪,承认地球不转的年代,也是拉瓦锡上断头台的年代;是茨威格服毒自杀的年代,也是老舍跳进太平湖的年代。

“我认为,知识分子的长处只是会以理服人,假如不讲理,他就没有长处,只有短处,活着没意思,不如死掉。丹麦王子哈姆雷特说:活着呢,还是死去,这是问题。但知识分子赶上这么个年代,死活不是问题。最大的问题是:这个倒霉的年头儿何时过去。假如能赶上这年头过去,就活着;赶不上了就犯不着再拖下去。

“老舍先生自杀的年代,我已经懂事了,认识不少知识分子。虽然我当时是个孩子,但嘴很严,所以也是他们谈话的对象。就我所知,他们最关心的正是赶得上赶不上的问题。在那年头死掉的知识分子,只要不是被杀,准是觉得赶不上好年头了。而活下来的准觉得自己还能赶上——当然,被改造好了、不再是知识分子的人不在此列。因此我对自己的答案颇有信心,敢拿这事和天下人打赌,知识分子最大的不幸,就是这种不理智。”

07
6

隐形马尔可夫模型(HMM)

0
归档:2021年6月分类:数海泛舟

什么是熵(Entropy)

简单来说,熵是表示物质系统状态的一种度量,用它老表征系统的无序程度。熵越大,系统越无序,意味着系统结构和运动的不确定和无规则;反之,,熵越小,系统越有序,意味着具有确定和有规则的运动状态。熵的中文意思是热量被温度除的商。负熵是物质系统有序化,组织化,复杂化状态的一种度量。

熵最早来原于物理学. 德国物理学家鲁道夫·克劳修斯首次提出熵的概念,用来表示任何一种能量在空间中分布的均匀程度,能量分布得越均匀,熵就越大。

一滴墨水滴在清水中,部成了一杯淡蓝色溶液热水晾在空气中,热量会传到空气中,最后使得温度一致更多的一些生活中的例子:

熵力的一个例子是耳机线,我们将耳机线整理好放进口袋,下次再拿出来已经乱了。让耳机线乱掉的看不见的“力”就是熵力,耳机线喜欢变成更混乱。熵力另一个具体的例子是弹性力。一根弹簧的力,就是熵力。 胡克定律其实也是一种熵力的表现。万有引力也是熵力的一种(热烈讨论的话题)。浑水澄清

file

于是从微观看,熵就表现了这个系统所处状态的不确定性程度。香农,描述一个信息系统的时候就借用了熵的概念,这里熵表示的是这个信息系统的平均信息量(平均不确定程度)。

最大熵模型

我们在投资时常常讲不要把所有的鸡蛋放在一个篮子里,这样可以降低风险。在信息处理中,这个原理同样适用。在数学上,这个原理称为最大熵原理(the maximum entropy principle)。

让我们看一个拼音转汉字的简单的例子。假如输入的拼音是"wang-xiao-bo",利用语言模型,根据有限的上下文(比如前两个词),我们能给出两个最常见的名字“王小波”和“王晓波 ”。至于要唯一确定是哪个名字就难了,即使利用较长的上下文也做不到。当然,我们知道如果通篇文章是介绍文学的,作家王小波的可能性就较大;而在讨论两岸关系时,台湾学者王晓波的可能性会较大。在上面的例子中,我们只需要综合两类不同的信息,即主题信息和上下文信息。虽然有不少凑合的办法,比如:分成成千上万种的不同的主题单独处理,或者对每种信息的作用加权平均等等,但都不能准确而圆满地解决问题,这样好比以前我们谈到的行星运动模型中的小圆套大圆打补丁的方法。在很多应用中,我们需要综合几十甚至上百种不同的信息,这种小圆套大圆的方法显然行不通。

数学上最漂亮的办法是最大熵(maximum entropy)模型,它相当于行星运动的椭圆模型。“最大熵”这个名词听起来很深奥,但是它的原理很简单,我们每天都在用。说白了,就是要保留全部的不确定性,将风险降到最小。

回到我们刚才谈到的拼音转汉字的例子,我们已知两种信息,第一,根据语言模型,wangxiao-bo可以被转换成王晓波和王小波;第二,根据主题,王小波是作家,《黄金时代》的作者等等,而王晓波是台湾研究两岸关系的学者。因此,我们就可以建立一个最大熵模型,同时满足这两种信息。现在的问题是,这样一个模型是否存在。匈牙利著名数学家、信息论最高奖香农奖得主希萨(Csiszar)证明,对任何一组不自相矛盾的信息,这个最大熵模型不仅存在,而且是唯一的。而且它们都有同一个非常简单的形式 -- 指数函数。下面公式是根据上下文(前两个词)和主题预测下一个词的最大熵模型,其中 w3 是要预测的词(王晓波或者王小波)w1 和 w2 是它的前两个字(比如说它们分别是“出版”,和“”),也就是其上下文的一个大致估计,subject 表示主题。

file

我们看到,在上面的公式中,有几个参数lambda和Z,他们需要通过观测数据训练出来。最大熵模型在形式上是最漂亮的统计模型,而在实现上是最复杂的模型之一。

我们上次谈到用最大熵模型可以将各种信息综合在一起。我们留下一个问题没有回答,就是如何构造最大熵模型。我们已经所有的最大熵模型都是指数函数的形式,现在只需要确定指数函数的参数就可以了,这个过程称为模型的训练。

最原始的最大熵模型的训练方法是一种称为通用迭代算法 GIS(generalized iterative scaling) 的迭代 算法。GIS 的原理并不复杂,大致可以概括为以下几个步骤:

  1. 假定第零次迭代的初始模型为等概率的均匀分布。
  2. 用第 N 次迭代的模型来估算每种信息特征在训练数据中的分布,如果超过了实际的,就把相应的模型参数变小;否则,将它们便大。
  3. 重复步骤 2 直到收敛。

GIS 最早是由 Darroch 和 Ratcliff 在七十年代提出的。但是,这两人没有能对这种算法的物理含义进行很好地解释。后来是由数学家希萨(Csiszar)解释清楚的,因此,人们在谈到这个算法时,总是同时引用 Darroch 和Ratcliff 以及希萨的两篇论文。GIS 算法每次迭代的时间都很长,需要迭代很多次才能收敛,而且不太稳定,即使在 64 位计算机上都会出现溢出。因此,在实际应用中很少有人真正使用 GIS。大家只是通过它来了解最大熵模型的算法。

八十年代,很有天才的孪生兄弟的达拉皮垂(Della Pietra)在 IBM 对 GIS 算法进行了两方面的改进,提出了改进迭代算法 IIS(improved iterative scaling)。这使得最大熵模型的训练时间缩短了一到两个数量级。这样最大熵模型才有可能变得实用。即使如此,在当时也只有 IBM 有条件是用最大熵模型。

由于最大熵模型在数学上十分完美,对科学家们有很大的诱惑力,因此不少研究者试图把自己的问题用一个类似最大熵的近似模型去套。谁知这一近似,最大熵模型就变得不完美了,结果可想而知,比打补丁的凑合的方法也好不了多少。于是,不少热心人又放弃了这种方法。第一个在实际信息处理应用中验证了最大熵模型的优势的,是宾夕法尼亚大学马库斯的另一个高徒原 IBM 现微软的研究员拉纳帕提(Adwait Ratnaparkhi)。拉纳帕提的聪明之处在于他没有对最大熵模型进行近似,而是找到了几个最适合用最大熵模型、而计算量相对不太大的自然语言处理问题,比如词性标注和句法分析。拉纳帕提成功地将上下文信息、词性(名词、动词和形容词等)、句子成分(主谓宾)通过最大熵模型结合起来,做出了当时世界上最好的词性标识系统和句法分析器。拉纳帕提的论文发表后让人们耳目一新。拉纳帕提的词性标注系统,至今仍然是使用单一方法最好的系统。科学家们从拉纳帕提的成就中,又看到了用最大熵模型解决复杂的文字信息处理的希望。

但是,最大熵模型的计算量仍然是个拦路虎。我在学校时花了很长时间考虑如何简化最大熵模型的计算量。终于有一天,我对我的导师说,我发现一种数学变换,可以将大部分最大熵模型的训练时间在 IIS 的基础上减少两个数量级。我在黑板上推导了一个多小时,他没有找出我的推导中的任何破绽,接着他又回去想了两天,然后告诉我我的算法是对的。从此,我们就建造了一些很大的最大熵模型。这些模型比修修补补的凑合的方法好不少。即使在我找到了快速训练算法以后,为了训练一个包含上下文信息,主题信息和语法信息的文法模型(language model),我并行使用了20 台当时最快的 SUN 工作站,仍然计算了三个月。由此可见最大熵模型的复杂的一面。

最大熵模型,可以说是集简与繁于一体,形式简单,实现复杂。值得一提的是,在Google的很多产品中,比如机器翻译,都直接或间接地用到了最大熵模型。

讲到这里,读者也许会问,当年最早改进最大熵模型算法的达拉皮垂兄弟这些年难道没有做任何事吗?他们在九十年代初贾里尼克离开 IBM 后,也退出了学术界,而到在金融界大显身手。他们两人和很多 IBM 语音识别的同事一同到了一家当时还不大,但现在是世界上最成功对冲基金(hedge fund)公司----文艺复兴技术公司 (Renaissance Technologies)。我们知道,决定股票涨落的因素可能有几十甚至上百种,而最大熵方法恰恰能找到一个同时满足成千上万种不同条件的模型。达拉皮垂兄弟等科学家在那里,用于最大熵模型和其他一些先进的数学工具对股票预测,获得了巨大的成功。从该基金 1988 年创立至今,它的净回报率高达平均每年 34%。也就是说,如果 1988 年你在该基金投入一块钱,今天你能得到 200 块钱。这个业绩,远远超过股神巴菲特的旗舰公司伯克夏哈撒韦(Berkshire Hathaway)。同期,伯克夏哈撒韦的总回报是 16 倍。

值得一提的是,信息处理的很多数学手段,包括隐含马尔可夫模型、子波变换、贝叶斯网络等等,在华尔街多有直接的应用。由此可见,数学模型的作用。

HMM(隐马尔可夫模型)

隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔可夫过程。其难点是从可观察的参数中确定该过程的隐含参数。然后利用这些参数来作进一步的分析,例如模式识别。

是在被建模的系统被认为是一个马尔可夫过程与未观测到的(隐藏的)的状态的统计马尔可夫模型。

下面用一个简单的例子来阐述:

假设我手里有三个不同的骰子。第一个骰子是我们平常见的骰子(称这个骰子为D6),6个面,每个面(1,2,3,4,5,6)出现的概率是1/6。第二个骰子是个四面体(称这个骰子为D4),每个面(1,2,3,4)出现的概率是1/4。第三个骰子有八个面(称这个骰子为D8),每个面(1,2,3,4,5,6,7,8)出现的概率是1/8。

file

假设我们开始掷骰子,我们先从三个骰子里挑一个,挑到每一个骰子的概率都是1/3。然后我们掷骰子,得到一个数字,1,2,3,4,5,6,7,8中的一个。不停的重复上述过程,我们会得到一串数字,每个数字都是1,2,3,4,5,6,7,8中的一个。例如我们可能得到这么一串数字(掷骰子10次):1 6 3 5 2 7 3 5 2 4

这串数字叫做可见状态链。但是在隐马尔可夫模型中,我们不仅仅有这么一串可见状态链,还有一串隐含状态链。在这个例子里,这串隐含状态链就是你用的骰子的序列。比如,隐含状态链有可能是:D6 D8 D8 D6 D4 D8 D6 D6 D4 D8

一般来说,HMM中说到的马尔可夫链其实是指隐含状态链,因为隐含状态(骰子)之间存在转换概率(transition probability)。在我们这个例子里,D6的下一个状态是D4,D6,D8的概率都是1/3。D4,D8的下一个状态是D4,D6,D8的转换概率也都一样是1/3。这样设定是为了最开始容易说清楚,但是我们其实是可以随意设定转换概率的。比如,我们可以这样定义,D6后面不能接D4,D6后面是D6的概率是0.9,是D8的概率是0.1。这样就是一个新的HMM。

同样的,尽管可见状态之间没有转换概率,但是隐含状态和可见状态之间有一个概率叫做输出概率(emission probability)。就我们的例子来说,六面骰(D6)产生1的输出概率是1/6。产生2,3,4,5,6的概率也都是1/6。我们同样可以对输出概率进行其他定义。比如,我有一个被赌场动过手脚的六面骰子,掷出来是1的概率更大,是1/2,掷出来是2,3,4,5,6的概率是1/10。

file

file

其实对于HMM来说,如果提前知道所有隐含状态之间的转换概率和所有隐含状态到所有可见状态之间的输出概率,做模拟是相当容易的。但是应用HMM模型时候呢,往往是缺失了一部分信息的,有时候你知道骰子有几种,每种骰子是什么,但是不知道掷出来的骰子序列;有时候你只是看到了很多次掷骰子的结果,剩下的什么都不知道。如果应用算法去估计这些缺失的信息,就成了一个很重要的问题。这些算法我会在下面详细讲。

如果你只想看一个简单易懂的例子,就不需要往下看了。

说两句废话,答主认为呢,要了解一个算法,要做到以下两点:会其意,知其形。答主回答的,其实主要是第一点。但是这一点呢,恰恰是最重要,而且很多书上不会讲的。正如你在追一个姑娘,姑娘对你说“你什么都没做错!”你要是只看姑娘的表达形式呢,认为自己什么都没做错,显然就理解错了。你要理会姑娘的意思,“你赶紧给我道歉!”这样当你看到对应的表达形式呢,赶紧认错,跪地求饶就对了。数学也是一样,你要是不理解意思,光看公式,往往一头雾水。不过呢,数学的表达顶多也就是晦涩了点,姑娘的表达呢,有的时候就完全和本意相反。所以答主一直认为理解姑娘比理解数学难多了。

回到正题,和HMM模型相关的算法主要分为三类,分别解决三种问题:

1)知道骰子有几种(隐含状态数量),每种骰子是什么(转换概率),根据掷骰子掷出的结果(可见状态链),我想知道每次掷出来的都是哪种骰子(隐含状态链)。这个问题呢,在语音识别领域呢,叫做解码问题。这个问题其实有两种解法,会给出两个不同的答案。每个答案都对,只不过这些答案的意义不一样。第一种解法求最大似然状态路径,说通俗点呢,就是我求一串骰子序列,这串骰子序列产生观测结果的概率最大。第二种解法呢,就不是求一组骰子序列了,而是求每次掷出的骰子分别是某种骰子的概率。比如说我看到结果后,我可以求得第一次掷骰子是D4的概率是0.5,D6的概率是0.3,D8的概率是0.2.第一种解法我会在下面说到,但是第二种解法我就不写在这里了,如果大家有兴趣,我们另开一个问题继续写吧。

2)还是知道骰子有几种(隐含状态数量),每种骰子是什么(转换概率),根据掷骰子掷出的结果(可见状态链),我想知道掷出这个结果的概率。看似这个问题意义不大,因为你掷出来的结果很多时候都对应了一个比较大的概率。问这个问题的目的呢,其实是检测观察到的结果和已知的模型是否吻合。如果很多次结果都对应了比较小的概率,那么就说明我们已知的模型很有可能是错的,有人偷偷把我们的骰子給换了。

3)知道骰子有几种(隐含状态数量),不知道每种骰子是什么(转换概率),观测到很多次掷骰子的结果(可见状态链),我想反推出每种骰子是什么(转换概率)。这个问题很重要,因为这是最常见的情况。很多时候我们只有可见结果,不知道HMM模型里的参数,我们需要从可见结果估计出这些参数,这是建模的一个必要步骤。

问题阐述完了,下面就开始说解法。(0号问题在上面没有提,只是作为解决上述问题的一个辅助)

0.一个简单问题

其实这个问题实用价值不高。由于对下面较难的问题有帮助,所以先在这里提一下。
知道骰子有几种,每种骰子是什么,每次掷的都是什么骰子,根据掷骰子掷出的结果,求产生这个结果的概率。

file

解法无非就是概率相乘:

file

1.看见不可见的,破解骰子序列

这里我说的是第一种解法,解最大似然路径问题。举例来说,我知道我有三个骰子,六面骰,四面骰,八面骰。我也知道我掷了十次的结果(1 6 3 5 2 7 3 5 2 4),我不知道每次用了那种骰子,我想知道最有可能的骰子序列。

其实最简单而暴力的方法就是穷举所有可能的骰子序列,然后依照第零个问题的解法把每个序列对应的概率算出来。然后我们从里面把对应最大概率的序列挑出来就行了。如果马尔可夫链不长,当然可行。如果长的话,穷举的数量太大,就很难完成了。

另外一种很有名的算法叫做Viterbi algorithm. 要理解这个算法,我们先看几个简单的列子。

首先,如果我们只掷一次骰子:

file

看到结果为1.对应的最大概率骰子序列就是D4,因为D4产生1的概率是1/4,高于1/6和1/8.

把这个情况拓展,我们掷两次骰子:

file

结果为1,6.这时问题变得复杂起来,我们要计算三个值,分别是第二个骰子是D6,D4,D8的最大概率。显然,要取到最大概率,第一个骰子必须为D4。这时,第二个骰子取到D6的最大概率是

file

同样的,我们可以计算第二个骰子是D4或D8时的最大概率。我们发现,第二个骰子取到D6的概率最大。而使这个概率最大时,第一个骰子为D4。所以最大概率骰子序列就是D4 D6。

继续拓展,我们掷三次骰子:

file

同样,我们计算第三个骰子分别是D6,D4,D8的最大概率。我们再次发现,要取到最大概率,第二个骰子必须为D6。这时,第三个骰子取到D4的最大概率是

file

同上,我们可以计算第三个骰子是D6或D8时的最大概率。我们发现,第三个骰子取到D4的概率最大。而使这个概率最大时,第二个骰子为D6,第一个骰子为D4。所以最大概率骰子序列就是D4 D6 D4。

写到这里,大家应该看出点规律了。既然掷骰子一二三次可以算,掷多少次都可以以此类推。我们发现,我们要求最大概率骰子序列时要做这么几件事情。首先,不管序列多长,要从序列长度为1算起,算序列长度为1时取到每个骰子的最大概率。然后,逐渐增加长度,每增加一次长度,重新算一遍在这个长度下最后一个位置取到每个骰子的最大概率。因为上一个长度下的取到每个骰子的最大概率都算过了,重新计算的话其实不难。当我们算到最后一位时,就知道最后一位是哪个骰子的概率最大了。然后,我们要把对应这个最大概率的序列从后往前推出来。

2.谁动了我的骰子?

比如说你怀疑自己的六面骰被赌场动过手脚了,有可能被换成另一种六面骰,这种六面骰掷出来是1的概率更大,是1/2,掷出来是2,3,4,5,6的概率是1/10。你怎么办么?答案很简单,算一算正常的三个骰子掷出一段序列的概率,再算一算不正常的六面骰和另外两个正常骰子掷出这段序列的概率。如果前者比后者小,你就要小心了。比如说掷骰子的结果是:

file

要算用正常的三个骰子掷出这个结果的概率,其实就是将所有可能情况的概率进行加和计算。同样,简单而暴力的方法就是把穷举所有的骰子序列,还是计算每个骰子序列对应的概率,但是这回,我们不挑最大值了,而是把所有算出来的概率相加,得到的总概率就是我们要求的结果。这个方法依然不能应用于太长的骰子序列(马尔可夫链)。

我们会应用一个和前一个问题类似的解法,只不过前一个问题关心的是概率最大值,这个问题关心的是概率之和。解决这个问题的算法叫做前向算法(forward algorithm)。

首先,如果我们只掷一次骰子:

file

看到结果为1.产生这个结果的总概率可以按照如下计算,总概率为0.18:

file

把这个情况拓展,我们掷两次骰子:

file

看到结果为1,6.产生这个结果的总概率可以按照如下计算,总概率为0.05:

file

继续拓展,我们掷三次骰子:

file

看到结果为1,6,3.产生这个结果的总概率可以按照如下计算,总概率为0.03:

file

同样的,我们一步一步的算,有多长算多长,再长的马尔可夫链总能算出来的。用同样的方法,也可以算出不正常的六面骰和另外两个正常骰子掷出这段序列的概率,然后我们比较一下这两个概率大小,就能知道你的骰子是不是被人换了。

Viterbi algorithm

HMM(隐马尔可夫模型)是用来描述隐含未知参数的统计模型,举一个经典的例子:一个东京的朋友每天根据天气{下雨,天晴}决定当天的活动{公园散步,购物,清理房间}中的一种,我每天只能在twitter上看到她发的推“啊,我前天公园散步、昨天购物、今天清理房间了!”,那么我可以根据她发的推特推断东京这三天的天气。在这个例子里,显状态是活动,隐状态是天气。

任何一个HMM都可以通过下列五元组来描述:

:param obs:观测序列
:param states:隐状态
:param start_p:初始概率(隐状态)
:param trans_p:转移概率(隐状态)
:param emit_p: 发射概率 (隐状态表现为显状态的概率)

file

states = ('Rainy', 'Sunny')

observations = ('walk', 'shop', 'clean')

start_probability = {'Rainy': 0.6, 'Sunny': 0.4}

transition_probability = {
    'Rainy' : {'Rainy': 0.7, 'Sunny': 0.3},
    'Sunny' : {'Rainy': 0.4, 'Sunny': 0.6},
    }

emission_probability = {
    'Rainy' : {'walk': 0.1, 'shop': 0.4, 'clean': 0.5},
    'Sunny' : {'walk': 0.6, 'shop': 0.3, 'clean': 0.1},
}

求解最可能的天气

求解最可能的隐状态序列是HMM的三个典型问题之一,通常用维特比算法解决。维特比算法就是求解HMM上的最短路径(-log(prob),也即是最大概率)的算法。

稍微用中文讲讲思路,很明显,第一天天晴还是下雨可以算出来:

定义V[时间][今天天气] = 概率,注意今天天气指的是,前几天的天气都确定下来了(概率最大)今天天气是X的概率,这里的概率就是一个累乘的概率了。

因为第一天我的朋友去散步了,所以第一天下雨的概率V[第一天][下雨] = 初始概率[下雨] * 发射概率[下雨][散步] = 0.6 * 0.1 = 0.06,同理可得V[第一天][天晴] = 0.24 。从直觉上来看,因为第一天朋友出门了,她一般喜欢在天晴的时候散步,所以第一天天晴的概率比较大,数字与直觉统一了。

从第二天开始,对于每种天气Y,都有前一天天气是X的概率 X转移到Y的概率 Y天气下朋友进行这天这种活动的概率。因为前一天天气X有两种可能,所以Y的概率有两个,选取其中较大一个作为V[第二天][天气Y]的概率,同时将今天的天气加入到结果序列中

比较V[最后一天][下雨]和[最后一天][天晴]的概率,找出较大的哪一个对应的序列,就是最终结果。

Viterbi被广泛应用到分词,词性标注等应用场景。

原文:https://www.cnblogs.com/skyme/p/4651331.html

03
6

[转]龙应台的《目送》

0
归档:2021年6月分类:点滴生活

华安上小学第一天,我和他手牵着手,穿过好几条街,到维多利亚小学。九月初,家家户户院子里的苹果和梨树都缀满了拳头大小的果子,枝丫因为负重而沉沉下垂,越出了树篱,钩到过路行人的头发。

很多很多的孩子,在操场上等候上课的第一声铃响。小小的手,圈在爸爸的、妈妈的手心里,怯怯的眼神,打量着周遭。他们是幼儿园的毕业生,但是他们还不知道一个定律:一件事情的毕业,永远是另一件事情的开启。

铃声一响,顿时人影错杂,奔往不同方向,但是在那么多穿梭纷乱的人群里,我无比清楚地看着自己孩子的背影──就好像在一百个婴儿同时哭声大作时,你仍旧能够准确听出自己那一个的位置。华安背着一个五颜六色的书包往前走,但是他不断地回头;好像穿越一条无边无际的时空长河,他的视线和我凝望的眼光隔空交会。

我看着他瘦小的背影消失在门里。

十六岁,他到美国做交换生一年。我送他到机场。告别时,照例拥抱,我的头只能贴到他的胸口,好像抱住了长颈鹿的脚。他很明显地在勉强忍受母亲的深情。

他在长长的行列里,等候护照检验;我就站在外面,用眼睛跟着他的背影一寸一寸往前挪。终于轮到他,在海关窗口停留片刻,然后拿回护照,闪入一扇门,倏忽不见。

我一直在等候,等候他消失前的回头一瞥。但是他没有,一次都没有。

现在他二十一岁,上的大学,正好是我教课的大学。但即使是同路,他也不愿搭我的车。即使同车,他戴上耳机──只有一个人能听的音乐,是一扇紧闭的门。有时他在对街等候公交车,我从高楼的窗口往下看:一个高高瘦瘦的青年,眼睛望向灰色的海;我只能想象,他的内在世界和我的一样波涛深邃,但是,我进不去。一会儿公交车来了,挡住了他的身影。车子开走,一条空荡荡的街,只立着一只邮筒。

我慢慢地、慢慢地了解到,所谓父女母子一场,只不过意味着,你和他的缘分就是今生今世不断地在目送他的背影渐行渐远。你站立在小路的这一端,看着他逐渐消失在小路转弯的地方,而且,他用背影默默告诉你:不必追。

我慢慢地、慢慢地意识到,我的落寞,仿佛和另一个背影有关。

博士学位读完之后,我回台湾教书。到大学报到第一天,父亲用他那辆运送饲料的廉价小货车长途送我。到了我才发觉,他没开到大学正门口,而是停在侧门的窄巷边。卸下行李之后,他爬回车内,准备回去,明明启动了引擎,却又摇下车窗,头伸出来说:“女儿,爸爸觉得很对不起你,这种车子实在不是送大学教授的车子。”

我看着他的小货车小心地倒车,然后“噗噗”驶出巷口,留下一团黑烟。直到车子转弯看不见了,我还站在那里,一口皮箱旁。

每个礼拜到医院去看他,是十几年后的时光了。推着他的轮椅散步,他的头低垂到胸口。有一次,发现排泄物淋满了他的裤腿,我蹲下来用自己的手帕帮他擦拭,裙子也沾上了粪便,但是我必须就这样赶回台北上班。护士接过他的轮椅,我拎起皮包,看着轮椅的背影,在自动玻璃门前稍停,然后没入门后。

我总是在暮色沉沉中奔向机场。

火葬场的炉门前,棺木是一只巨大而沉重的抽屉,缓缓往前滑行。没有想到可以站得那么近,距离炉门也不过五米。雨丝被风吹斜,飘进长廊内。我掠开雨湿了前额的头发,深深、深深地凝望,希望记得这最后一次的目送。

我慢慢地、慢慢地了解到,所谓父女母子一场,只不过意味着,你和他的缘分就是今生今世不断地在目送他的背影渐行渐远。你站立在小路的这一端,看着他逐渐消失在小路转弯的地方,而且,他用背影默默告诉你:不必追。

26
5

社区正式发布.NET 6 Preview4

0
归档:2021年5月分类:C#和.NET

时间过得真快,.NET 5我还没有来得及研究,眼看.NET 6的正式版本马上就要来了,我一直期待这个版本,因为这是LTS版本,我们团队会迁移到这个版本上来。

社区一直在不断推进.NET 6的可用性,Build 2021大会发布了Preview4,这个版本更新很大,可能与最终的版本相差不大,,正式发布RC版本是在8月份,正式发布RTM版本是在11月 ,到时后.NET正式完成.NET Framwork和.NET Core以及Mono的功能统一,还是非常值得期待的。

新产品功能:

System.Text.Json support for IAsyncEnumerable
System.Text.Json: Writable DOM Feature
Microsoft.Extensions.Logging compile-time source generator
System.Linq enhancements
Significantly improved FileStream performance on Windows
Enhanced Date, Time and Time Zone support
CodeGen
.NET Diagnostics: EventPipe for Mono and Improved EventPipe Performance
IL trimming
Single-file publishing
CLI install of .NET 6 SDK Optional Workloads
Built-in SDK version checking
CLI Templates (dotnet new)

另外,还有.NET MAUI或多平台应用UI :允许开发人员构建适用于Windows、MacOS、ios 和android的应用程序,共享单一代码库和模板。
ASP.NET Blazor混合应用程序:帮助开发人员构建基于Web的跨平台桌面体验,从而利用本机设备功能。
对ARM的加强支持:包括 Silicon 和ARM64支持。

24
5

马尔可夫链(Markov Chain)

0
归档:2021年5月分类:数海泛舟

马尔可夫链是一种非常重要的随机过程模型,在排队论、预测等方面有非常多的应用,当年我考数学系的时候就是冲着学校有一位马尔可夫领域的顶级数学家,不过后来自己越走越偏,也没有来得及进修这个算法。

随机过程

讲马尔可夫链不得不提到随机过程。顾名思义,它其实就是个过程,比如今天下雨,那么明天下不下雨呢?后天下不下雨呢?从今天下雨到明天不下雨再到后天下雨,这就是个过程。那么怎么预测N天后到底下不下雨呢?这其实是可以利用公式进行计算的,随机过程就是这样一个工具,把整个过程进行量化处理,用公式就可以推导出来N天后的天气状况,下雨的概率是多少,不下雨的概率是多少。

说白了,随机过程就是一些统计模型,利用这些统计模型可以对自然界的一些事物进行预测和处理,比如天气预报,比如股票,比如市场分析,比如人工智能。它的应用还真是多了去了。

马尔可夫链 (Markov Chain)

马尔可夫链 (Markov Chain)是随机过程中的一种过程,到底是哪一种过程呢?好像一两句话也说不清楚,还是先看个例子吧。

比如一个人,每天中午12点的标配,仨状态:吃,玩,睡。这就是传说中的状态分布。

你想知道他n天后中午12点的状态么?是在吃,还是在玩,还是在睡?这些状态发生的概率分别都是多少?

先看个假设,他每个状态的转移都是有概率的,比如今天玩,明天睡的概率是几,今天玩,明天也玩的概率是几几,看图更清楚一点。

file

这个矩阵就是转移概率矩阵P,并且它是保持不变的,就是说第一天到第二天的转移概率矩阵跟第二天到第三天的转移概率矩阵是一样的。(这个叫时齐,不细说了,有兴趣的同学自行百度)。

有了这个矩阵,再加上已知的第一天的状态分布,就可以计算出第N天的状态分布了。

file

S1 是4月1号中午12点的的状态分布矩阵 [0.6, 0.2, 0.2],里面的数字分别代表吃的概率,玩的概率,睡的概率。

那么

4月2号的状态分布矩阵 S2 = S1 * P (俩矩阵相乘)。

4月3号的状态分布矩阵 S3 = S2 * P (跟S1无关,只跟S2有关)。

4月4号的状态分布矩阵 S4 = S3 * P (跟S1,S2无关,只跟S3有关)。

...

4月n号的状态分布矩阵 Sn = Sn-1 * P (只跟它前面一个状态Sn-1有关)。

总结

马尔可夫链就是这样一个任性的过程,它将来的状态分布只取决于现在,跟过去无关!就把下面这幅图想象成是一个马尔可夫链吧。实际上就是一个随机变量随时间按照Markov性进行变化的过程。

file

23
5

自由多元文化主义

0
归档:2021年5月分类:政治哲学

去年一整年在阅读政治哲学方面的图书,前段时间读完金里卡先生的《当代政治哲学》,开始对自由多元文化注意产生浓厚的兴趣,“多元文化主义的自由主义”在上世纪末以来,一直是欧美倡导的价值观,特别是澳大利亚、新西兰和加拿大,这三个主要的移民国家几乎把自由多元文化注意当成本国的主流价值观。

这段时间先后阅读了十几篇论文,包括周濂老师的《如果多元文化主义是答案,它的问题是什么》、《澳大利亚多元文化主义政策的形成》、《多元文化主义的兴衰?关于多样性社会中接纳和包容的新争论》,这是我的文献综述结果:

file

我觉得自己下一步可以集中重读罗尔斯和金里卡,做更深入的思考,目前我的初步感觉是:自由多元主义是非常美好的理想,而且也有实际操作的可能,现实中的澳大利亚、加拿大和新西兰做得也非常不错。即使如此,我仍然相信在宪政制度下要真正平稳地运行自由多元主义,其实需要更高的社会成本和更高的公民素质。

更进一步,我甚至认为自由多元文化主义有可能最适合的运用是:已经能保障基本自由和人权、并且收入水平达到发达国家水平的移民国家。这里我要说明:如果一个国家已经建立起了自由多元文化主义,那么哪怕物质收入水平下降到发展中国家,也适用自由多元文化主义这一价值体系。对于加拿大、澳大利亚和新西兰这几个著名的移民国家,如果轻易放弃自由多元主义,那么将是莫大的损失和悲哀。

对于美国和欧洲来说,践行自由多元主义(这里指让其成为社会主流),可能会面临很多困难和阻碍,但是我觉得这不是放弃理想的理由。

20
5

贝叶斯算法-垃圾邮件过滤器

0
归档:2021年5月分类:数海泛舟

垃圾邮件是一种令人头痛的顽症,困扰着所有的互联网用户。

正确识别垃圾邮件的技术难度非常大。传统的垃圾邮件过滤方法,主要有"关键词法"和"校验码法"等。前者的过滤依据是特定的词语;后者则是计算邮件文本的校验码,再与已知的垃圾邮件进行对比。它们的识别效果都不理想,而且很容易规避。

2002年,Paul Graham提出使用"贝叶斯推断"过滤垃圾邮件。他说,这样做的效果,好得不可思议。1000封垃圾邮件可以过滤掉995封,且没有一个误判。

另外,这种过滤器还具有自我学习的功能,会根据新收到的邮件,不断调整。收到的垃圾邮件越多,它的准确率就越高。

贝叶斯过滤器是一种统计学过滤器,建立在已有的统计结果之上。所以,我们必须预先提供两组已经识别好的邮件,一组是正常邮件,另一组是垃圾邮件。

我们用这两组邮件,对过滤器进行"训练"。这两组邮件的规模越大,训练效果就越好。Paul Graham使用的邮件规模,是正常邮件和垃圾邮件各4000封。

"训练"过程很简单。首先,解析所有邮件,提取每一个词。然后,计算每个词语在正常邮件和垃圾邮件中的出现频率。比如,我们假定"sex"这个词,在4000封垃圾邮件中,有200封包含这个词,那么它的出现频率就是5%;而在4000封正常邮件中,只有2封包含这个词,那么出现频率就是0.05%。(【注释】如果某个词只出现在垃圾邮件中,Paul Graham就假定,它在正常邮件的出现频率是1%,反之亦然。这样做是为了避免概率为0。随着邮件数量的增加,计算结果会自动调整。)

有了这个初步的统计结果,过滤器就可以投入使用了。

现在,我们收到了一封新邮件。在未经统计分析之前,我们假定它是垃圾邮件的概率为50%。(【注释】有研究表明,用户收到的电子邮件中,80%是垃圾邮件。但是,这里仍然假定垃圾邮件的"先验概率"为50%。)

我们用S表示垃圾邮件(spam),H表示正常邮件(healthy)。因此,P(S)和P(H)的先验概率,都是50%。

file

然后,对这封邮件进行解析,发现其中包含了sex这个词,请问这封邮件属于垃圾邮件的概率有多高?

我们用W表示"sex"这个词,那么问题就变成了如何计算P(S|W)的值,即在某个词语(W)已经存在的条件下,垃圾邮件(S)的概率有多大。

根据条件概率公式,马上可以写出

file

公式中,P(W|S)和P(W|H)的含义是,这个词语在垃圾邮件和正常邮件中,分别出现的概率。这两个值可以从历史资料库中得到,对sex这个词来说,上文假定它们分别等于5%和0.05%。另外,P(S)和P(H)的值,前面说过都等于50%。所以,马上可以计算P(S|W)的值:

file

因此,这封新邮件是垃圾邮件的概率等于99%。这说明,sex这个词的推断能力很强,将50%的"先验概率"一下子提高到了99%的"后验概率"。

做完上面一步,请问我们能否得出结论,这封新邮件就是垃圾邮件?

回答是不能。因为一封邮件包含很多词语,一些词语(比如sex)说这是垃圾邮件,另一些说这不是。你怎么知道以哪个词为准?

Paul Graham的做法是,选出这封信中P(S|W)最高的15个词,计算它们的联合概率。(【注释】如果有的词是第一次出现,无法计算P(S|W),Paul Graham就假定这个值等于0.4。因为垃圾邮件用的往往都是某些固定的词语,所以如果你从来没见过某个词,它多半是一个正常的词。)

所谓联合概率,就是指在多个事件发生的情况下,另一个事件发生概率有多大。比如,已知W1和W2是两个不同的词语,它们都出现在某封电子邮件之中,那么这封邮件是垃圾邮件的概率,就是联合概率。

在已知W1和W2的情况下,无非就是两种结果:垃圾邮件(事件E1)或正常邮件(事件E2)。

其中,W1、W2和垃圾邮件的概率分别如下:

如果假定所有事件都是独立事件(【注释】严格地说,这个假定不成立,但是这里可以忽略),那么就可以计算P(E1)和P(E2):

file
file

又由于在W1和W2已经发生的情况下,垃圾邮件的概率等于下面的式子:

file

file

将P(S)等于0.5代入,得到

file

将P(S|W1)记为P1,P(S|W2)记为P2,公式就变成

file

这就是联合概率的计算公式。

将上面的公式扩展到15个词的情况,就得到了最终的概率计算公式:

file

一封邮件是不是垃圾邮件,就用这个式子进行计算。这时我们还需要一个用于比较的门槛值。Paul Graham的门槛值是0.9,概率大于0.9,表示15个词联合认定,这封邮件有90%以上的可能属于垃圾邮件;概率小于0.9,就表示是正常邮件。

有了这个公式以后,一封正常的信件即使出现sex这个词,也不会被认定为垃圾邮件了。

18
5

贝叶斯算法-医患诊断模型

0
归档:2021年5月分类:数海泛舟

1、背景材料及引言

7岁女孩晓宇(化名)患急性支气管炎,在武汉市儿童医院住院4天,医生为确诊病情,为她抽血化验了32个指标,仅化验费就花费1130元。晓宇的家长质疑:医院如此看病,是过度检查。晓宇的接诊医生李志超说:“晓宇入院时,根据其家长自述病情,我认为孩子的情况有些严重,于是确定了上述化验指标”。该院四内科副主任李医生说:在当时情况下,李志超对患者的病情判断、以及开出的化验指标,都是有道理的。但如果是我接诊,会以自己的经验有针对性地进行化验检查,可能不会一下开出这么多化验指标。该科主任温玟莉主任医师称:一次抽血化验32个指标,是因为李志超当时怀疑孩子得了败血症,这样处理没有问题。但最后的检查结果并不是败血症,这只能说明李志超较年轻,缺乏丰富的临床经验,只有通过全面检查才能确诊。

在医患关系紧张,看病难、看病贵的现实情况下,我们应如何看待这个颇有争议的案例,医生看病是应该有针对性地开方,还是列出“算法式”的化验指标进行排查,本研究以贝叶斯公式为依据,从中国现行的医疗体制出发,对此类问题进行了有益的探索,以期建立一种定量化的诊断模型。

2、模型建立

设“患者有某种病症”为事件A,引起事件A的病因为样本空间Ω。B1,B2,…Bn为Ω的一个分划,即Bi∩Bj=Φ,i≠j,Uni=1Bi=Ω,并假定P(Bi)>0。由贝叶斯公式,由某病因引起事件A的概率为:

P(Bi|A)=P(Bi)P(A|Bi)/n/j=1P(Bj)P(A⌒Bj)(1)

公式(1)为医生有针对性地确诊提供了参考。

在疹疗过程中,医生要根据临床经验对各种病因Bi进行权衡。如果误诊,则有可能承担相应的医疗事故风险,相应的误诊概率记为P′(Bi),并设因可能承担风险而承担的赔偿费用为C′i,患者承担医生针对病因Bi开出的疹疗方案的费用为Ci,于是在一次诊治过程中患者承担的平均费用为:

E(A)=ni=1P(Bi)Ci(2)

医生可能承担的平均赔偿金额为:

E′(A)=ni=1P′(Bi)C′i(3)

我们称该模型为诊断模型,并以δ1≤E(A)-E′(A)≤δ2为标准来衡量诊断方案的合理性,其中δ1≥0,δ2为某一不是特别大的正数。即患者所承担的平均医疗费用应比医生可能承担的平均赔偿金要多,但两者不应差别太大。

3、模型检验

我们以发热和上腹疼痛两个病症的相关数据对该模型进行检验。设原假设为H0:诊断是合理的。备择假设为H1,诊断合理与否需要进一步考查。

对表1和表2中相关数据的说明:中国2002年9月1日实施的《医疗事故处理条例》(以下简称《条例》)第五十条对赔偿项目和标准的规定与当地上一年度职工平均工资水平紧密挂钩,实行一次性结算。表1和表2中的工资水平参考了2007年2月湖北省第十届人民代表大会上的湖北省政府工作报告中的数据:2006年城镇居民人均可支配收入为9803元。对发热症状中的“非典”及“某种类似非典的突发疾病”所可能带来的医疗事故我们以一级医疗事故中的死亡来处理,赔偿金额按<国家赔偿法>第二十七条的规定,检查费用以一次全身检查所需费用10000元进行计算;对“心肺功能缺陷”所可能带来的医疗事故我们按二级医疗事故处理,赔偿金额取202110,检查费用按心电图20元次,心脏彩超180元次,心肌酶谱60元次,肺检查80元次进行计算,药费以相应检查费用的0.8计算。对上腹疼痛症状中的“胃癌”及“心、膈等器官有病变”可能带来的医疗事故我们按二级医疗事故来处理,赔偿金额取202110,对B3的检查费用以B超40元次,催C120元次,胃镜(无痛)240元次进行计算,药费以相应检查费用的0.8计算,对B4的检查费用以胃镜(无痛)240元次和心脏彩超180元次进行计算,药费以相应检查费用的0.8计算。对两种症状中“其它”原因对患者可能造成的损害我们以《条例》第三十三条(三)的规定进行处理:在现有医学科学技术条件下,发生无法预料或者不能防范的不良后果的,不属于医疗事故。对两种症状中“其它”原因,患者的一次医疗费用我们取城镇居民人均可支配收入的5%,即490元进行计算。所有医疗费用均指一次诊治的检查费和药费之和,不包括后续治疗的费用。检查费用以武汉市某三级甲等医院的相关标准为参考。表1发热症状诊断模型的相关数据注:B1=人体生理功能的正常表现:B4=某种类似非典的突发疾病;B5=心肺功能缺陷。表2上腹疼痛症状诊断模型的相关数据注,B2=胃溃疡、十二指肠溃疡;B4=心、膈等器官有病变。

设“发热症状”为事件A1,“上腹疼痛症状”为事件A2,由表1和表2的数据计算得(四舍五入精确到元):

E(A1)=121,E′(A1)=187165;E(A2)=265,E′(A2)=22232

我们会发现原假设H0:诊断是合理的,是不成立的。这些数据告诉我们医生这个职业的确是个高风险的职业,在中国建立医疗责任保险制度有着必要性与迫切性。

4、模型评价

该模型在合理假设的基础上,对“对症下药”进行量化,对诊疗方案的合理性给出了一个量化的标准,有一定的合理性与临床参考价值。特别是在用数据对模型检验后,证实了医生的确是个高风险的职业,也显示了在中国建立医疗责任保险制度的必要性和紧迫性。但在模型应用过程中还需要注意以下几个方面:①病因的复杂性。病因的复杂性会导致样本空间的分划的个数n比较大,因此需要结合医学规律对样本空间分划进行合理的选择。②患者体质的差别。不同的患者对同类的医疗事故,由于体质的差别可能带来不同程度的损害。③医生临床诊断水平的差异。不同的医生,由于经验等方面的因素,误诊概率可能有较大的差别。④医院的潜规则。有的医院把医生的收入与其给医院的创收挂钩,这样同一病症在不同的医院治疗,诊疗费用会有较大的差别。⑤实际赔偿金的差别。不同地区上一年度人均收入差别较大,加之实际赔偿金还与实际谈判能力有关系,这样就可能导致同类医疗事故在不同地区及不同的患者(或家属)身上,实际赔偿金差别也较大。⑥现行医疗体制对模型的影响。下面对此进行较详细的分析。

中国现行的医疗事故赔偿责任者只有一个,就是医疗机构,但医疗机构作为理性人,会尽量减少其自身的医疗成本以实现利益的最大化。医疗机构会将其自身受到的损失通过以下三种主要方式进行转移:一是利用价格机制,提高医疗费用,即将损失分散于所有的就医者身上;二是由具体责任人承担风险,即将损失的一部分转移给与事故直接相关的医务人员;三是通过责任保险机制,将损失转移给保险公司。但长期以来,在中国实际上只有第一种和第二种途径在发挥着作用,责任保险机制可以说作用甚微。

这样,就很容易导致医疗费用上涨,引发医患关系紧张。医学的专业化使得医疗机构和患者之间存在巨大的信息差,医疗机构有动机也有能力通过使患者进行重复或者不必要的检查项目等方法多收费用,弥补自身损失.因此模型作用的发挥,还需要以下几方面的配合:

①重视医德建设,提高医护人员自身修养。裘法祖院士在文献里有很深刻的认识。

②加强医患之间的沟通,进行换位思考,让医生理解患者的苦衷,让患者理解诊疗的风险。

③加强误诊规律的研究。医疗技术的进步从来都是和风险相并存的,从某种程度上说误诊是不可避免的,但作为医护人员要提高生命权保护意识,不断提高自身的临床思维能力诊断能力力争把误诊率降到最低。

④加强医护人员临床思维能力和临床经验的提高。医学很大程度上是经验学科,医学理论最终还要内化为医护人员的实际诊断能力才能发挥作用。公式(1)为医护人员提高诊断水平提供了一个很好的参考。

⑤探索适合中国国情的、于患于医均有益的医疗责任保险制度。尤其是在生命意识越来越受到重视的今天,只有切实的降低行医的风险,才能从根本上解决医患关系紧张的现状,实现医患关系的和谐。

公告栏

欢迎大家来到我的博客,我是dodoro,希望我的博客能给你带来帮助。